Single-Channel Kinetics, Inactivation, and Spatial Distribution of Inositol Trisphosphate (IP3) Receptors in Xenopus Oocyte Nucleus
نویسندگان
چکیده
Single-channel properties of the Xenopus inositol trisphosphate receptor (IP3R) ion channel were examined by patch clamp electrophysiology of the outer nuclear membrane of isolated oocyte nuclei. With 140 mM K+ as the charge carrier (cytoplasmic [IP3] = 10 microM, free [Ca2+] = 200 nM), the IP3R exhibited four and possibly five conductance states. The conductance of the most-frequently observed state M was 113 pS around 0 mV and approximately 300 pS at 60 mV. The channel was frequently observed with high open probability (mean P(o) = 0.4 at 20 mV). Dwell time distribution analysis revealed at least two kinetic states of M with time constants tau < 5 ms and approximately 20 ms; and at least three closed states with tau approximately 1 ms, approximately 10 ms, and >1 s. Higher cytoplasmic potential increased the relative frequency and tau of the longest closed state. A novel "flicker" kinetic mode was observed, in which the channel alternated rapidly between two new conductance states: F1 and F2. The relative occupation probability of the flicker states exhibited voltage dependence described by a Boltzmann distribution corresponding to 1.33 electron charges moving across the entire electric field during F1 to F2 transitions. Channel run-down or inactivation (tau approximately 30 s) was consistently observed in the continuous presence of IP3 and the absence of change in [Ca2+]. Some (approximately 10%) channel disappearances could be reversed by an increase in voltage before irreversible inactivation. A model for voltage-dependent channel gating is proposed in which one mechanism controls channel opening in both the normal and flicker modes, whereas a separate independent mechanism generates flicker activity and voltage-reversible inactivation. Mapping of functional channels indicates that the IP3R tends to aggregate into microscopic (<1 microm) as well as macroscopic (approximately 10 microm) clusters. Ca2+-independent inactivation of IP3R and channel clustering may contribute to complex [Ca2+] signals in cells.
منابع مشابه
Single-channel inositol 1,4,5-trisphosphate receptor currents revealed by patch clamp of isolated Xenopus oocyte nuclei.
Patch clamp of the outer nuclear membrane of isolated Xenopus oocyte nucleus was used to measure the single-channel properties of the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R). The observed channel was activated by IP3, inhibited by heparin, and Ca(2+)-selective, with ion permeabilities PCa:PK:PCl = 8:1:0.05. In symmetric KCl buffer, the channel was ohmic (113 picosiemens in 140 mM KCl...
متن کاملMetabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate by the oocytes of Xenopus laevis.
The pathway and kinetics of inositol 1,4,5-trisphosphate (IP3) metabolism were measured in Xenopus laevis oocytes and cytoplasmic extracts of oocytes. Degradation of microinjected IP3 in intact oocytes was similar to that in the extracts containing comparable concentrations of IP3 ([IP3]). The rate and route of metabolism of IP3 depended on the [IP3] and the intracellular free Ca2+ concentratio...
متن کاملThe physiologic concentration of inositol 1,4,5-trisphosphate in the oocytes of Xenopus laevis.
To measure the concentration of inositol 1,4,5-trisphosphate ([IP3]) in small regions of single Xenopus oocytes, a biological detector cell was combined with capillary electrophoresis. This method is 10, 000 times more sensitive than all existing assays enabling subcellular measurement of [IP3] in Xenopus oocytes. Upon addition of lysophosphatidic acid to an oocyte, [IP3] increased from 40 to 6...
متن کاملA kinetic model of single and clustered IP3 receptors in the absence of Ca2+ feedback.
Ca2+ liberation through inositol 1,4,5-trisphosphate receptor (IP3R) channels generates complex patterns of spatiotemporal cellular Ca2+ signals owing to the biphasic modulation of channel gating by Ca2+ itself. These processes have been extensively studied in Xenopus oocytes, where imaging studies have revealed local Ca2+ signals ("puffs") arising from clusters of IP3R, and patch-clamp studies...
متن کاملSingle-channel recording of inositol trisphosphate receptor in the isolated nucleus of a muscle cell line.
Nuclear calcium appears to have an important role in the regulation of gene expression in many cells, but the mechanisms involved in controlling nuclear Ca2+ signaling are controversial and still poorly understood. We have described the presence of inositol 1,4,5 trisphosphate (IP3) receptors in the nuclei of skeletal muscle cells. Now, we have characterized the properties of the IP3 receptors ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 109 شماره
صفحات -
تاریخ انتشار 1997